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Abstract: Local driving cycles (LDCs) capture local traffic characteristics, while standard driving
cycles (SDCs) compare vehicles in distinct regions. There is a plethora of LDCs, raising the question
as to how distinct they are. To quantify it, we first organized a collection of 77 LDCs. From the
speed—time images, it was possible to extract numerical vectors of 40 cycles in a standardized way.
Comparing the LDCs developed for cars, we found that their parameters fluctuate significantly: the
average speed varies from 14.7 to 44.7 km/h, and the fuel economy varies from 10.8 to 20.5 km/L.
Comparing the LDCs with FTP-75 cycle, the difference in speed is 7 km/h, and in fuel economy is
1.5 km/L. For WLTC, the difference is 19.4 km/h and 3 km/L, respectively. Thus, given the deviations
found between the analyzed LDCs, and between LDCs and SDCs, the numerical results reinforce the
relevance of using LDCs for each region.
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1. Introduction

A driving cycle (DCs) is a time–speed series that represents a driving pattern to depict a real-world
behavior [1]. Government, researchers, and manufacturers use standard driving cycles (SDCs) to
estimate emission and consumption [2,3]. The DCs are used for several purposes, for example: vehicle
design (e.g., evaluating the impact of modifying vehicle parts, engine calibration, aerodynamics,
choice of tires in the emission, fuel consumption, and drivability), optimization and assessment of
new technologies (e.g., the energy management system of hybrid vehicles [4–7]), and evaluation of
emission levels as required by the legislation (e.g., European emission standards (Euro) and Brazilian
emission standards (PROCONVE)). Examples of the most employed SDCs are FTP-75 cycle (USA),
JC08 (Japan), NEDC, and WLTC (Europe). Despite all of the efforts to generate a SDC that considers
average real-world driving, there is a growing concern regarding the differences in the results obtained
from the type approval tests and those under real-world conditions, because the difference can be up
to 60% [8].

This difference between the results can be assigned to several factors, such as the vehicle’s
characteristic (e.g., vehicle age and mileage, fuel employed, vehicle shape), traffic conditions, road,
driver behavior, and the procedure applied to evaluate the vehicle energy consumption. In order
to better estimate the actual energy usage of the vehicles in the real-world, new type approval tests
are developed, which usually include new driving cycles to be used in laboratory tests, and new
procedures (e.g., certification test initial temperature, gear changing criteria, tire calibration, usage of
auxiliary equipment) [9]. Besides using stricter procedures, the values obtained in the certification test
can be adjusted, applying a correction factor [10].
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Another approach employed from researchers to minimize the difference for energy consumption
and emission is replacing SDCs for local driving cycles (LDCs). Each LDC attempts to provide values
representative of the region in which they are assessed. Several researchers developed LDCs; thus,
there are numerous cycles with different characteristics available in the literature [11]. One approach
to compare LDCs and SDCs is by evaluating their characteristic kinematic parameters (CPs) [8], such
as average speed and average acceleration. They can also be compared using energy parameters (EPs).

In past decades, several LDCs have been published around the world. This compels the research
question on how much LDCs differ numerically among themselves, and between themselves and the
SDCs. In this context, the main objective of this work is to numerically compare the differences between
the various LDCs among themselves, as well compare the differences between LDCs and SDCs. Those
differences are calculated in function of the CPs, fuel economy (FE), and energy consumption (EC).

1.1. Comparison of Kinematic and Energy Parameters of Driving Cycles

Several papers also present comparisons between cycles (LDCs or SDCs). In Section 3.1, we will
present a list of the 77 LDCs developed from 1978 to 2020 for cities in Asia, Europe, Oceania, and
South and North America. To briefly exemplify the differences between the cycles, we now present
some of the results in the literature comparing the average speed (V), the average acceleration (a), and
the idling time percentage (IT). Arun et al. [12] generated LDCs for cars in Chennai (India), finding
differences between peak and off-peak hours (∆V = 4.4 km/h, ∆a = 0.16 m/s2, ∆IT = 15%), as well
as when compared with FTP-75 cycle (∆V = 14.2 km/h, ∆a = 0.08 m/s2, ∆IT = 12%). Tong et al. [13]
proposed an LDC for Hanoi (Vietnam), concluding that there was a difference between their cycle and
the standard cycle used at the time, NEDC (∆V = 13.7 km/h, ∆a = 0.13 m/s2, ∆IT = 15%). Knez et
al. [14] compared previous cycles to their proposed driving cycle for Celje (Slovenia), observing that
small towns have higher average speed (∆V = 6.1 km/h, ∆a = 0.17 m/s2, ∆IT = 5%). Mayakuntla and
Verma [11] developed a driving cycle for Bangalore (India), finding that different regions in India need
different cycles (∆V = 2.3 km/h, ∆IT = 13% in their comparison). They also emphasized the need to
abandon the SDC used for legislative purposes in favor of LDCs (they found ∆V = 10.7 km/h, ∆a =

0.93 m/s2, and ∆IT = 6% when comparing their LDC with an SDC).
A remarkable review of driving cycles was performed by Barlow et al. [15], presenting CPs for

256 worldwide driving cycles. It is an important document that provides the mathematical definitions
of the most relevant CPs and allows their comparison in numerous cycles, both legislated (e.g., FTP-75
cycle, WLTC, and WMTC) and non-legislated (e.g., as ARTEMIS, INRET, and OSCAR), as categorized
by [16].

In additional to studying the CPs for the driving cycles, some authors also evaluated EPs (e.g., EC
and FE). Approximately one third of the papers listed in Section 3.1 evaluate energy. Tsai et al. [17]
found the energy consumption of the Kaohsiung driving cycle is approximately 10% higher than that
of the ECE (an European standard cycle). In Chen et al. [18], the fuel economy of the urban driving
cycle is 21% lower than the rural driving cycle in Taiwan. Ho et al. [19] calculated that the energy
consumption of the NEDC is 5% lower than the Singapore driving cycle. In Karavalakis et al. [20], the
energy consumption increased approximately 30% in comparison to the NEDC. Roso and Martins [21]
estimated that the energy consumption of the Santa Maria driving cycle at 12 a.m. and at 5 p.m. is
smaller than the FTP-75 cycle by 1.5% and 21%, respectively. In Ma et al. [2], the energy consumption
of the Beijing peak and off-peak cycles are higher than the NEDC by 37.5% and 29.3%, respectively.
Other papers also analyzed energy parameters, as Tzeng and Chen [22], Azevedo et al. [23], Gong et
al. [24], Koossalapeerom et al. [25], and Rechkemmer et al. [26]. It should be considered that there are
different approaches used to calculate the energy usage, such as: dynamometer test [5,17,18,20,22],
computer simulation (e.g., GT-Suite [21], Autonomie [4], and ADVISOR [6,7]), instantaneous vehicle
fuel consumption modeling [2,19,26], and energy measurements performed with onboard equipment
in on-road driving experiments [23–25].
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1.2. Contribution of the Study

The main contribution of this study is the quantification of the kinematic and energy differences
among the various LDCs, as well as the quantification of the differences between the LDCs and the
SDCs. Other contributions of this work are an organized list with 77 LDCs surveyed from the literature;
a homogenized list (i.e., the parameters are now calculated using the same methodology) with 40 LDCs
(the data could not be obtained from the other 37 cycles); an in-depth energy analysis studying how
the energy is used to overcome each one of the resistances (i.e., aerodynamic drag, inertia, rolling, and
idling); and a study on the influence of the kinematic parameters of the cycles on the fuel economy of
the vehicles.

2. Methodology

This section comprises three subtopics: extraction of the numerical vectors from the speed—time
profile figures, characterization of the cycles in terms of the CPs, and computer simulation of the EPs.

2.1. Data Selection, Extraction, and Filtering

We first performed a detailed bibliographic search to determine which LDCs could be used. To be
selected, a paper should have presented at least a figure containing the speed—time profile, provided
access to the full text (some congress papers are difficult to find), and proposed at least one new LDC.
Using this method, we collected 77 LDCs from 32 papers. Some authors developed more than one
LDC in their studies. Examples are Lai et al. [27], who developed 9 driving cycles for buses in Beijing,
and Amirjamshidi and Roorda [1], who constructed 15 driving cycles for trucks in Toronto, Canada.
For reference and validation, we used two SDCs: FTP-75 cycle and WLTC.

To obtain the numerical vectors from the speed—time profiles, we requested for the data for all
the LDCs listed in this paper, thus, obtaining the data from three authors who shared one or more
LDCs [1,12,20]. The majority of the requested emails returned because of discontinued electronic
addresses or information technology problems. Selph et al. [28] discuss how the response rate for
online requests is usually low. Therefore, to obtain the numerical vectors from the speed–time profiles,
we employed the publicly available web-based software, WebPlotDigitizer, to automatically extract
numerical data from the figures. This method is considered to be accurate and efficient [29,30].
However, factors, such as image resolution, line color, thickness, and presence of other data in the
figure, influence the final results.

Figure 1 presents a time section of the original FTP-75 cycle data and the corresponding extracted
data. It can verify that the extraction is highly adequate, with the exception of sparse points, in which
case the data for speed (V) are not perfectly extracted at specific times (t) (e.g., V = 0 at t = 727 s, t = 766
s, and t = 957 s). It is identified that, it is possible to manually edit the points extracted by the software
(i.e., adding, removing, or adjusting). However, we preferred to use an automatic extraction process
for all the LDCs, intending to employ the least human intervention. The validation will −demonstrate
this procedure is numerically reasonable.
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Figure 1. Example of data extraction in WebPlotDigitizer for a time section in FTP-75 cycle. 

We noticed the extraction method generated noise in certain cases: low-speed numerical noise 
when it should be null, unreal speed fluctuations when the speed should be constant, and unrealistic 
accelerations. To correct those anomalies, we filtered the raw data from WebPlotDigitizer using the 
set of conditions listed in Table 1. 

Table 1. Conditions in the filtering process. 

Condition (If) Result (Then) Reason 
V < 3.6 km/h V = 0 km/h Provide null speed (Idling mode) 
a < 0.05 m/s² a = 0 m/s² Avoid acceleration fluctuation (Cruising mode) 

d < −0.05 m/s² d = 0 m/s² Avoid deceleration fluctuation (Cruising mode) 
a > 3 m/s² a = 3 m/s²  Limit maximum acceleration  

d < −7 m/s² d = −7 m/s²  Limit maximum deceleration 

Not all of the figures were adequately extracted, as easily confirmed by a visual inspection. From 
the 77 LDCs collected in the study, 40 generated good numerical vectors following the extraction 
process (Section 3.3). The other 37 could not be considered. For example, Figure 2 presents two LDCs 
whose data could not be adequately extracted (in contrast to Figure 1, which presents a successful 
extraction example). The software was unable to extract the data precisely for Celje and Shanghai 
because of the line thickness. 

  
(a) (b) 

Figure 2. Examples of local driving cycles (LDCs) that could not be adequately extracted: (a) Celje [14] 
(Reprint with permission [4930310296243]; Copyright Year 2020, Publisher: Elsevier) and (b) Shanghai 
[31] (Reprint with permission [4930290354283]; Copyright Year 2020, Publisher: Elsevier). 

  

Figure 1. Example of data extraction in WebPlotDigitizer for a time section in FTP-75 cycle.

We noticed the extraction method generated noise in certain cases: low-speed numerical noise
when it should be null, unreal speed fluctuations when the speed should be constant, and unrealistic
accelerations. To correct those anomalies, we filtered the raw data from WebPlotDigitizer using the set
of conditions listed in Table 1.

Table 1. Conditions in the filtering process.

Condition (If) Result (Then) Reason

V < 3.6 km/h V = 0 km/h Provide null speed (Idling mode)
a < 0.05 m/s2 a = 0 m/s2 Avoid acceleration fluctuation (Cruising mode)

d < −0.05 m/s2 d = 0 m/s2 Avoid deceleration fluctuation (Cruising mode)
a > 3 m/s2 a = 3 m/s2 Limit maximum acceleration

d < −7 m/s2 d = −7 m/s2 Limit maximum deceleration

Not all of the figures were adequately extracted, as easily confirmed by a visual inspection. From
the 77 LDCs collected in the study, 40 generated good numerical vectors following the extraction
process (Section 3.3). The other 37 could not be considered. For example, Figure 2 presents two LDCs
whose data could not be adequately extracted (in contrast to Figure 1, which presents a successful
extraction example). The software was unable to extract the data precisely for Celje and Shanghai
because of the line thickness.
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Figure 2. Examples of local driving cycles (LDCs) that could not be adequately extracted:
(a) Celje [14] (Reprint with permission [4930310296243]; Copyright Year 2020, Publisher: Elsevier) and
(b) Shanghai [31] (Reprint with permission [4930290354283]; Copyright Year 2020, Publisher: Elsevier).
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2.2. Evaluating Characteristic Parameters

Each author uses a specific set of parameters to evaluate the CPs in his/her research. For example,
consider the CP, “time spent accelerating.” Chen et al. [18], Tong et al. [32], and Wang et al. [33]
considered that a vehicle is accelerating when a > 0.1 m/s2; Amirjamshidi and Roorda [1] and Arun
et al. [12] required two combined conditions, when V > 5 km/h and a > 0.1 m/s2. Koossalapeerom
et al. [25] and Ma et al. [2] considered the fractions of time to reach a ≥ 0.27 m/s2 and a > 0.28 m/s2,
respectively. In this study, to compare the LDCs, we use the same set of parameters to characterize all
of the driving cycles, as defined in Table 2. It is important to emphasize that the parameters listed in
Table 2 should be used only subsequent to the filtering process described in Table 1.

Table 2. Parameters for the characterization process—to be used following the filtering process
described in.

Characteristic Parameters Symbol Definition

Average speed V (km/h) Average speed including zero speed
Distance D (km) Distance traveled

Average acceleration a (m/s2) Average acceleration rate above 0.0 m/s2

Average deceleration d (m/s2) Average deceleration rate below 0.0 m/s2

Time t (s) Total test time
Idling mode IT (%) Time proportion in which V = 0.0 km/h and a = 0.0 m/s2

Acceleration mode AT (%) Time proportion in which a > 0.0 m/s2

Deceleration mode DT (%) Time proportion in which a < 0.0 m/s2

Cruising mode CT (%) 100%—IT—AT—DT

2.3. Evaluating the Energy Parameters

In Section 2.2, we described the standardized process to obtain the numerical vectors from the
speed–time profiles in a driving cycle figure. Following the acquiring of the speed vector, it is possible
to evaluate the instantaneous power that an engine needs to deliver (Peng, Equation (1)) to overcome
the resistance and perform a desired movement.

Peng =
1

ηtrans

{[
mV

dV
dt

]
+

[
kA(V −W)2V + CRmg Vcosθ+ mg Vsinθ

]
+ [βµmgVcosθ]

}
, (1)

In Equation (1), ηtrans is the percentage of the engine power that reaches the wheel. The first
bracket in the right side of Equation (1) is the inertial power, which is directly influenced by the mass
(m), speed (V), and acceleration (dV/dt). The second bracket is the sum of all the resistance powers
(aerodynamic drag power, rolling resistance power, and gravitational resistance power), and the
third bracket is the braking power. In the aerodynamic drag power, the aerodynamic factor, kA (i.e.,
1/2ρairACD), considers the fluid specific mass (ρair), vehicle frontal area (A), vehicle shape coefficient
(CD), and wind speed (W). The rolling resistance power considers the power to deform the tires and
dampers and to overcome the vehicle internal friction. It considers the rolling resistance coefficient, CR,
and the inclination of the road, θ. The gravitational resistance power considers the road inclination
and the vehicle mass, m. In the braking power (third term in the brackets), β is the braking factor used
by the pilot, µ is the friction coefficient between a tire and the road, m is the vehicle mass, g is the
gravitational force, and θ is the road inclination. The braking power is null (β = 0) when dV/dt ≥ 0
(the vehicle is accelerating), or when it is decelerating, i.e., dV/dt < 0. However, the resistance power
is sufficient to allow the desired retarding movement. When the resistances are unable to provide
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the desired deceleration, the breaking pedal is activated (β > 0). In this study, all of the simulations
considered horizontal roads (θ = 0) and still air (W = 0).

Pmax,eng(Ω) =


C1Ωmin + C2Ωmin

(
Ωmin −Ωpeak,tor

)2
Ω < Ωmin

C1Ω+ C2Ω
(
Ω−Ωpeak,tor

)2
Ωmin ≤ Ω ≤ Ωmax

0 Ω > Ωmax

, (2)

C1 =
Pmax

2Ωpeak,pow
2

(
3Ωpeak,pow −Ωpeak,tor

)
(3)

C2 = −
Pmax

2Ωpeak,pow
2
(
Ωpeak,pow −Ωpeak,tor

) (4)

By definition, the power delivered by an engine (Peng, Equation (1)) is typically lower than the
maximum power it can generate at a desired engine speed, Ω (Pmax,eng). In this study, we calculate
Pmax,eng using an empirical correlation described by Ni and Henclewood [34], as expressed in Equation
(2). According to it, the curve of Pmax,eng is a cubic function of the engine speed, and C1 and C2 are
constants described in the original paper, Equations (3) and (4). These constants are responsible
for adjusting the power curve considering the peak power (Pmax), the engine speed at peak power
(Ωpeak,pow) and engine speed at peak torque (Ωpeak,tor). The engine power is considered constant below
the minimum engine speed, Ωmin, simulating the clutch usage, and is null above the maximum engine
speed, Ωmax, simulating the rev limiter.

The relation between the instantaneous engine power (Peng) and the maximum power available
by the engine (Pmax,eng) is obtained from the throttle usage, α (0–1), at a particular engine speed.

Peng = αPmax,eng, (5)

It is possible for the power demand obtained by Equation (1) to be higher than the power the
engine can actually provide (thus disregarding the inequality, Peng ≤ Pmax,eng, and the condition, α =

[0,1] in Equation (5)). Actually, in that case, the vehicle cannot perform the acceleration required by the
cycle, even with α = 1. This condition only occurs for low-powered vehicles, such as mopeds, or heavy
vehicles when they were not tested in the cycles developed particularly for them.

To calculate the engine efficiency (ηeng, Equation (6)) we use the empirical correlation provided
by Ben-Chaim et al. [35], considering that ηeng is a function of the maximum engine efficiency, η0,
corrected by factors µrev (Equation (7), considers the engine speed) and µpow (Equation (8), considers
the throttle usage, α, 0–1) under any given speed.

ηeng(Ω,α) = η0urev(Ω)upow(α), (6)

urev(Ω) = 0.7107 + 0.9963
(

Ω
Ωpeak,pow

)
−1.0582

(
Ω

Ωpeak,pow

)2

+ 0.3124
(

Ω
Ωpeak,pow

)3

(7)

upow(α) = 0.234 + 1.0592α+ 0.8149α2
− 1.2121α3 (8)

The relation between the engine speed (needed to calculate Peng in Equation (2)) and the vehicle
speed, V, is given by the gear geometry and the wheel diameter. With the determination of the
delivered power Equations (1)–(5) and the engine efficiency (Equation (6)) variation during the entire
driving cycle, it is possible to calculate the vehicle energy consumption per distance traveled:

EC =
1
D

∫ t

0

Peng

ηeng
dt, (9)
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The FE can be calculated using the fuel heating value (FHV) as follows:

FE =
FHV
EC

, (10)

2.4. Characterization of the Reference Vehicle

In this study, to compare all of the cycles, we used the same vehicle for reference. Table 3 lists the
parameters of the reference vehicle. In this study, we used the second most sold model in Brazil in
2018, a Hyundai HB20 (hatchback, 1.0 L engine). Some of the vehicle’s parameters were obtained from
its manual and others were requested to the Brazilian National Institute of Metrology, Standardization
and Industrial Quality (INMETRO), responsible for the standard test regarding fuel emission and
consumption of all vehicles. This vehicle was chosen because is representative of the Brazilian fleet.
In 2018, the hatchback category was the most sold (29%), and the 1.0 L engine displacement was also
the most sold category (36% of the total sales) [36]. The peak power, torque, and weight of the reference
vehicle is also similar to the other vehicles sold in its category. It should be stressed that Brazilian
cars are, on average, lighter and less powerful than American and European cars; and the Brazilian
official test fuel is gasohol (E22), a blend of gasoline (78% v/v) and anhydrous sugarcane ethanol (22%
v/v). For all the energy calculations, for comparison reasons, we consider the same vehicle parameters,
engine power curve, and engine efficiency map (Table 3).

Table 3. Engine and vehicle parameters used for the car simulation.

Parameter Car

Pmax Peak power 55.16 kW
Pidle Idling power 8.0 kW

Ωpeak,pow Engine speed at peak power 6200 rpm
Ωpeak,tor Engine speed at peak torque 4500 rpm
Ωmin Minimum engine speed 900 rpm
η0 Maximum engine efficiency 22%
ηtrans Transmission efficiency 90%

m Total mass (vehicle + driver) 1126 kg
µ Tire/road friction coefficient 0.80
kA Aerodynamic drag factor 0.428
CR Rolling resistance coefficient 0.014

FHV Fuel heating value 28.99 MJ/liter

3. Results and Discussion

In this section, we first present the original CPs for the 32 reviewed papers, followed by the
validation of the extraction and characterization processes. Subsequently, we describe the calculation
of the CPs and EPs for the 40 LDCs. Finally, we study the relations between the CPs and the EPs.

3.1. Original Characteristic Parameters for Local Driving Cycles

Table 4 lists the original CPs (CPORIG) for the 36 LDCs developed for passenger cars, and Table 5
lists CPORIG for the 41 LDCs for the other vehicle classes (buses, trucks, and motorcycles). The
occasional appearance of dashes in both the tables corresponds to the cases in which the authors did not
inform the CP value. We emphasize that each author uses a specific formula to calculate the CPs. The
last columns of Tables 4 and 5 list the number of local driving cycles (NCs) considered in each paper.
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Table 4. Original characteristic kinematic parameter (CPORIG) for the LDCs for passenger cars (PCs).

Local Driving Cycle Reference V D a d t CT IT AT DT NC

Athens [20] 21.2 6.5 0.67 - 1160 - - 36% - 1
Bangalore [11] 16.2 9.4 1.51 −1.76 2088 14% 22% 35% 30% 7
Baqubah [37] 21.6 6.3 0.24 −0.24 1052 0% 25% - - 1
Beijing [33] 26.1 - 0.51 −0.51 - 15% 13% 36% 37% 11
Beijing [24] − 14.5 0.37 −0.40 2536 11% 24% 34% 31% 1

Beijing—Off-peak [2] 28.8 - 0.51 −0.56 - 39% 24% 19% 18% 2
Beijing—Peak [2] 23.9 - 0.51 −0.57 - 37% 26% 19% 18% 2

Beijing [3] 38.5 - - - 1200 28% 16% 29% 27% 1
Celje [14] 25.5 13.0 0.79 −0.84 2453 25% 25% 26% 25% 4

Changchun [33] 27.8 - 0.56 −0.62 - 12% 19% 36% 33% 11
Chengdu [33] 31.3 - 0.55 −0.60 - 15% 12% 38% 35% 11

Chennai—Peak [12] 17.7 5.2 0.45 −0.54 1065 14% 31% 30% 25% 16
Chennai—Off-peak [12] 22.1 - 0.61 −0.71 - 20% 16% 34% 29% 16

Chongqing [33] 31.3 - 0.49 −0.56 - 16% 8% 41% 35% 11
Edinburgh [38] 20 4.2 - - 835 9% 31% 31% 29% 1
Fortaleza [23] 23.8 8.4 - - 1216 0% 43% 30% 27% 1

Hanoi [13] 19.4 10.0 0.41 −0.38 1862 20% 10% 33% 37% 7
Hefei [39] 20.2 - - - 1237 25% 12% 29% 34% 3

Hong Kong [32] 15.5 6.3 0.55 −0.59 1471 9% 31% 31% 29% 5
Hong Kong—Urban [40] 25.0 10.3 0.59 −0.60 1548 12% 18% 35% 34% 3

Hong Kong—Sub Urb [40] 44.4 18.3 0.56 −0.56 1476 14% 5% 40% 40% 3
Hong Kong—HWY [40] 38.3 14.9 0.40 −0.41 1401 17% 8% 38% 36% 3

Jilin City [33] 36.8 - 0.35 −0.50 - 20% 6% 44% 31% 11
Jiutai [33] 25.5 - 0.37 −0.41 - 20% 5% 39% 36% 11

Mashad [41] 20.3 - 0.53 −0.54 - 3% 22% 37% 38% 1
Mianyang [33] 35.3 - 0.48 −0.57 - 15% 12% 40% 33% 11
Nanjing [42] 30.7 - 0.49 −0.55 - 30% 20% 27% 23% 5
Ningbo [33] 23.7 - 0.51 −0.58 - 11% 20% 37% 33% 11

Pune [43] 19.6 - - - 1533 56% 18% 14% 11% 1
Santa Maria—5 p.m. [21] 30.8 11.7 - - 2017 2% 0% 51% 48% 2
Santa Maria—12 a.m. [21] 42.9 11.7 - - 1294 3% 0% 45% 53% 2

Shanghai [33] 27.6 - 0.55 −0.60 - 9% 26% 34% 31% 11
Sidney [44] 33.6 5.94 - - 637 - 18% - - 1

Singapore [19] 32.8 21.5 - - 2344 26% 21% 29% 25% 1
Tianjin [33] 22.5 - 0.36 0.43 - 21% 12% 36% 30% 11
Zitong [33] 32.3 - 0.29 −0.39 - 24% 6% 40% 30% 11

Average 27.2 10.5 0.53 −0.54 1521 17% 17% 34% 31% 8
Standard Deviation 7.5 4.8 0.23 0.33 534 12% 10% 7% 8% 4

Table 4 lists the results for the CPs presented in the original papers (only for the passenger cars).
The relatively large standard deviations for the average speed (V = 27.2 ± 7.5 km/h) and acceleration (a
= 0.53 ± 0.23 m/s2) reconfirm numerically that the LDCs worldwide are distinct, thus justifying their
differences. In relation to the comparison of the LDCs with SDCs, FTP-75 cycle, and WLTC (class 3)
present an average speed of 34.1 km/h and 46.5 km/h, respectively, both being higher than the mean
average speed of the LDCs (27.2 km/h).

Comparing the results of the passenger cars and other vehicles, we can see that the mean average
speed decreases (Table 4: V = 27.2 ± 7.5 km/h; Table 5: V = 23.3 ± 10.3 km/h) and the acceleration
increases (Table 4: a = 0.53 ± 0.23 m/s2; Table 5: a = 0.56 ± 0.28 m/s2). To understand these results, we
divided Table 5 based on the vehicle category, obtaining a greater speed for trucks (V = 24.3 ± 12.4
km/h), then motorcycles (V = 23.9 ± 8.5 km/h), and then buses (V = 20.6 ± 10.3 km/h). Motorcycles
cycles have lower average speeds, probably because trucks cycles have more highway stretches. In
terms of acceleration, the higher values were for the motorcycles (a = 0.75 ± 0.27 m/s2), as expected
from their lower masses, followed by those for the trucks (a = 0.38 ± 0.15 m/s2). There is no acceleration
information for buses. Another interesting result is found by analyzing the modes of movement. For
trucks, we calculated a very short cruising time (CT = 3% ± 3%), whereas the motorcycles interestingly
presented a longer time for the cruising speed (CT = 21% ± 8%); because they are nimble, one would
expect motorcycles to spend more time accelerating.
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Table 5. CPORIG for the LDCs for vehicles different from passenger cars: bus (B), motorcycle (M),
truck (T).

Local Driving Cycle Reference VT V D a d t CT IT AT DT NC

Beijing—BRT LS 1 [27] B 8.6 2.8 - - 1167 - - - - 9
Beijing—BRT MS 2 [27] B 21.7 7.4 - - 1220 - - - - 9
Beijing—BRT HS 3 [27] B 31.3 10.3 - - 1185 - - - - 9

Beijing—Express LS 1 [27] B 7 2.4 - - 1226 - - - - 9
Beijing—Express MS 2 [27] B 19.5 6.8 - - 1257 - - - - 9
Beijing—Express HS 3 [27] B 35.9 11.3 - - 1130 - - - - 9
Beijing—Regular LS 1 [27] B 8.1 2.7 - - 1188 - - - - 9
Beijing—Regular MS 2 [27] B 19.9 6.0 - - 1084 - - - - 9
Beijing—Regular HS 3 [27] B 30.9 10.9 - - 1275 - - - - 9

Chennai [12] M 22.8 9.1 0.65 −0.73 1448 24% 19% 30% 27% 16
Edinburgh—Urban [45] M 33.5 7.3 1.28 −2.59 770 7% 2% 44% 47% 9
Edinburgh—Rural [45] M 49.7 9.0 0.89 −0.95 656 8% 1% 45% 46% 9

Hanoi [13] M 20.1 11.5 0.42 −0.46 2061 21% 8% 37% 34% 7
Kaohsiung [18] M 19.2 4.3 0.66 −0.64 803 24% 24% 25% 26% 5
Kaohsiung [17] M 21 6.6 0.58 −0.61 1126 9% 28% 33% 31% 3
Khon Kaen [46] M 25.0 8.1 0.64 −0.69 1164 18% 21% 32% 29% 5

Khon Kaen—Electric [25] M 22.6 5.0 1.42 −1.05 781 38% 24% 15% 21% 2
Khon Kaen—Gasoline [25] M 22.5 4.9 0.64 −0.65 775 19% 27% 28% 26% 2

Pingtung [18] M 30.2 6.8 0.69 −0.79 810 22% 10% 36% 32% 5
Shanghai [31] B 23 - 0.71 −0.83 - 5% 34% 33% 28% 1

Shanghai—Electric [26] M 19.9 9.43 0.50 −0.45 1704 33% 11% 27% 30% 1
Shenyang [47] - 28.1 - 0.31 −0.36 - 44% 0% 31% 25% 1
Taichung [18] M 18.9 3.8 0.63 −0.61 714 25% 23% 26% 26% 5

Taipei [22] M 19.4 5.1 0.80 −0.83 950 19% 20% 32% 30% 1
Taipei [18] M 16.6 3.5 0.68 −0.68 763 22% 30% 24% 24% 5

Toronto—HDT 4 Freeway [1] T 40.9 - 0.15 −0.28 - 3% 2% 63% 33% 21
Toronto—MDT 5 Freeway [1] T 39.7 - 0.14 −0.34 - 1% 2% 69% 28% 21
Toronto—LDT 6 Freeway [1] T 52.7 - 0.29 −0.54 - 4% 2% 61% 33% 21
Toronto—LDT 6 M. Artl. [1] T 18.4 - 0.58 −0.71 - 3% 17% 44% 36% 21
Toronto—MDT 5 M. Artl. [1] T 15.2 - 0.36 −0.65 - 1% 18% 52% 29% 21
Toronto—HDT 4 M. Artl. [1] T 16.6 - 0.40 −0.59 - 2% 16% 49% 34% 21
Toronto—HDT 4 LS. Blvd. [1] T 28.4 - 0.28 −0.61 - 1% 12% 59% 28% 21
Toronto—MDT 5 LS. Blvd. [1] T 25.7 - 0.27 −0.65 - 1% 10% 63% 26% 21
Toronto—LDT 6 LS. Blvd. [1] T 34.8 - 0.57 −0.75 - 8% 12% 46% 35% 21
Toronto—HDT 4 U. Ave. [1] T 12.4 - 0.40 −0.60 - 1% 22% 46% 31% 21
Toronto—MDT 5 U. Ave. [1] T 13.1 - 0.38 −0.63 - 0% 19% 50% 30% 21
Toronto—LDT 6 U. Ave. [1] T 13.9 - 0.60 −0.75 - 1% 20% 44% 36% 21

Toronto—HDT 4 Artl Transit [1] T 16.9 - 0.41 −0.56 - 6% 19% 43% 32% 21
Toronto—MDT 5 Artl Transit [1] T 15.8 - 0.36 −0.59 - 6% 18% 48% 29% 21
Toronto—LDT 6 Artl Transit [1] T 19.4 - 0.57 −0.57 - 12% 14% 37% 37% 21

URB [18] M 17.4 4.2 0.66 −0.60 877 20% 28% 25% 27% 5

Average 23.3 6.6 0.56 −0.67 1089 13% 16% 41% 31% 13
Standard Deviation 10.3 2.8 0.28 0.42 332 12% 9% 13% 6% 7

1 Low Speed; 2 Medium Speed; 3 High Speed; 4 Heavy Duty Trucks; 5 Medium Duty Trucks; 6 Light Duty Trucks.

3.2. Validation

The numerical vectors of well-known SDCs for the type—approval tests, such as FTP-75 cycle and
WLTC, are easily available online [48,49]. LDC papers typically present only the figure showing the
speed as a function of time, whereas the numerical vector is not specified. In addition, they do not
generally present all of the CPs considered in this study.

To obtain the CPs from the figures, we used a method comprising two steps: extraction and
characterization. The extraction step refers to obtaining the numerical vector from the figure, and the
characterization step refers to the process of obtaining the CPs from the extracted numerical vector
(ENV). The last step, the simulation, is the process to obtain the EPs from the numerical vector.

Figure 3 presents a flowchart explaining the methodology to obtain the CPs and EPs investigated
in this study. In group I, CPORIG refers to the CPs obtained directly from the papers, as informed by
their authors. In group II, the original numerical vector (ONV) is obtained from agencies (in the case of
SDCs) or authors (in the case of LDCs). CPONV refers to our standardized characterization (calculation)
of the CPs using the ONV. In Group III, the ENV is the numerical vector we extracted from the figures
presented in the papers studied and CPENV and EPENV refer to our calculation of the CPs and EPs
obtained from the ENV.
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We used six driving cycles to validate the extraction and characterization methods: two SDCs
(FTP-75 cycle and WLTC) and four LDCs (Athens, Toronto, and two from Chennai). The LDC data
were obtained directly from the authors. Table 6 contains CPORIG (as presented by the authors), CPONV

(calculated by us from the ONVs), and CPENV (calculated by us from the ENVs).

Table 6. Validation Results.

Driving Cycle V D a d t CT IT AT DT

SDC FTP-75 cycle
CPORIG 34.1 17.8 0.51 −0.58 1874 7.7% 17.9% 39.4% 35.0%
CPONV 34.1 17.8 0.51 −0.58 1874 7.7% 17.9% 39.4% 35.0%
CPENV 34.0 17.7 0.51 −0.59 1874 11.4% 18.6% 37.5% 33.3%

SDC WLTC (class 3)
CPORIG 46.5 23.3 0.41 −0.45 1800 3.7% 12.6% 43.8% 39.8%
CPONV 46.5 23.3 0.41 −0.45 1800 3.6% 12.6% 43.9% 40.0%
CPENV 46.5 23.3 0.44 −0.46 1800 9.8% 13.9% 39.2% 37.0%

LDC Athens
CPONV 20.2 6.5 0.71 −0.72 1160 4.1% 27.3% 34.5% 34.1%
CPENV 20.0 6.5 0.57 −0.59 1160 5.2% 25.4% 35.4% 34.0%

LDC Chennai Car
Peak

CPONV 17.7 5.2 0.42 −0.50 1064 7.2% 31.8% 33.4% 27.9%
CPENV 17.6 5.2 0.32 −0.50 1065 12.7% 30.0% 34.6% 22.7%

LDC Chennai Car
Off-Peak

CPONV 22.1 7.9 0.57 −0.67 1292 14.1% 17.0% 37.2% 31.8%
CPENV 22.4 8.0 0.37 −0.42 1294 17.4% 16.2% 35.5% 31.0%

LDC Toronto HDT 1

Freeway
CPONV 41.0 16.3 0.15 −0.28 1428 2.4% 1.9% 62.8% 32.8%
CPENV 40.8 16.2 0.18 −0.25 1430 33.2% 3.0% 37.6% 26.2%

1 Heavy Duty Trucks.

To validate the characterization step, we compared CPORIG [50] and CPONV for FTP-75 cycle and
WLTC. From Table 6, we can verify that the characterization is effective, because there is no considerable
difference between the values of CPORIG and CPONV, for both the SDCs.

To validate the extraction step, CPONV (calculated from the ONV) is compared to the CPENV

(calculated from the ENV). For FTP-75 cycle, the results for the average speed, distance, time,
acceleration, and deceleration were virtually equal. There was a little difference in the time proportion
for each driving mode (CT, IT, AT, and DT), because the CPs were more sensitive to the acceleration
and speed fluctuations. The validation using the WLTC data presented similar results.
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For the four LDCs listed in Table 6, we compared CPENV (characterized following the extraction
of the numerical vector from the figure) to CPONV (from the vectors shared by the authors). For all
the cycles, the speed difference was under 0.1 km/h, and the distance difference was shorter than
0.2 km. For the acceleration and deceleration, the difference was less than 0.2 m/s2. There are some
differences between the CPENV and CPONV in Table 6, but with little effect on the energy consumption.
For example, the relative error for the acceleration in Athens could be considered high (20%). However,
the acceleration difference was 0.14 m/s2, equivalent to a speed variation of 0.5 km/h per second. This
is low, because, for example, in the Brazilian law for driving cycle tests, there is a tolerance of 3.2 km/h
in relation to the instantaneous velocity, in the type approval test [51]. Therefore, in general, we can
deduce that our extraction process is also validated.

3.3. Characteristic Kinematic Parameters from Local Driving Cycles

Table 7 summarizes the results for the CPENV for 28 LDCs for passenger cars, and Table 8 shows
that for the 12 LDCs of other vehicles classes. These CPENV values were obtained using the methodology
described in Figure 4, comprising extraction and characterization.

Table 7. CPENV of LDCs for passenger cars.

Local Driving Cycle Reference V D a d t CT IT AT DT

Athens [20] 20.0 6.5 0.57 −0.59 1160 5% 25% 35% 34%
Bangalore [11] 16.1 9.3 0.37 −0.49 2088 8% 32% 34% 26%

Beijing [33] 25.8 7.8 0.44 −0.46 1081 12% 12% 39% 37%
Beijing [24] 20.4 14.4 0.38 −0.43 2536 14% 27% 31% 28%
Beijing [3] 34.1 11.3 0.57 −0.71 1192 15% 14% 39% 32%

Changchun [33] 27.4 8.7 0.51 −0.62 1137 12% 22% 36% 30%
Chengdu [33] 31.0 10.3 0.48 −0.53 1191 13% 13% 39% 36%

Chennai—Car Peak [12] 17.6 5.2 0.32 −0.50 1065 13% 30% 35% 23%
Chennai—Car Off-Peak [12] 22.4 8.0 0.37 −0.42 1294 17% 16% 36% 31%

Chongqing [33] 31.0 10.0 0.46 −0.49 1157 14% 11% 38% 36%
Edinburgh [38] 19.7 4.6 0.58 −0.63 835 8% 32% 32% 29%
Fortaleza [23] 23.7 8.0 0.51 −0.57 1217 8% 30% 33% 29%

Hanoi [13] 22.1 9.8 0.33 −0.31 1862 18% 14% 33% 34%
Hong Kong [32] 14.7 6.0 0.46 −0.50 1471 3% 34% 33% 30%

Hong Kong—Urban [40] 24.0 10.3 0.50 −0.52 1548 14% 22% 33% 32%
Hong Kong—Sub Urb [40] 44.7 18.3 0.40 −0.40 1475 12% 6% 42% 41%

Hong Kong—HWY [40] 36.7 14.9 0.28 −0.29 1460 16% 14% 36% 35%
Jilin [33] 36.3 10.7 0.34 −0.47 1062 17% 7% 44% 32%

Jiutai [33] 25.4 7.5 0.42 −0.46 1070 15% 5% 42% 38%
Mashad [41] 19.8 5.6 0.52 −0.50 1019 6% 25% 34% 35%

Mianyang [33] 35.1 9.9 0.42 −0.60 1017 14% 12% 43% 31%
Nanjing [42] 36.3 11.8 0.29 −0.35 1174 23% 12% 35% 30%
Ningbo [33] 23.4 7.4 0.46 −0.51 1137 11% 20% 36% 33%

Santa Maria—12 a.m. [21] 37.6 13.5 0.20 −0.17 1294 34% 0% 34% 34%
Shanghai [33] 27.3 8.6 0.50 −0.50 1135 11% 26% 32% 32%
Sydney [44] 33.6 6.0 0.73 −0.72 637 9% 21% 35% 35%
Tianjin [33] 22.2 6.6 0.34 −0.42 1075 17% 14% 38% 31%
Zitong [33] 31.9 8.1 0.28 −0.37 911 21% 8% 41% 31%

Average 27.1 9.2 0.43 −0.48 1261 14% 18% 36% 32%
Standard Deviation 7.6 3.2 0.11 0.12 383 6% 9% 4% 4%

Correlation Coefficient in Relation to
Fuel Economy 0.35 0.32 0.81 0.84 0.04 0.90 −0.72 0.13 0.17

For the passenger cars: VENV = 27.1 ± 7.6 km/h, VORIG = 28.1 ± 8.0 km/h (considering only
the cycles of Table 4 also in Table 7), VFTP-75 = 34.1 km/h, and VWLTC-3 = 46.5 km/h. In relation to
acceleration, aENV = 0.43 ± 0.11 m/s2, aORIG = 0.54 ± 0.24 m/s2 (only for the cycles in both Tables 4
and 7), aFTP-75 = 0.51 m/s2 and aWLTC-3 = 0.41 m/s2. The average speed of CPENV is lower than that of
both the SDCs. The average acceleration for CPENV is similar only to that of WLTC but not to that of
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FTP-75 cycle. Table 8 summarizes the 12 LDCs for the motorcycles and the trucks. These cycles are
also provided in Table 5 (original values).

Table 8. CPENV of LDCs for trucks (T) and motorcycles (M).

Local Driving Cycle Reference VT V D a d t CT IT AT DT

Hanoi [13] M 19.9 11.4 0.33 −0.36 2063 26% 10% 33% 31%
Khon Kaen [46] M 25.0 8.1 0.51 −0.62 1164 8% 22% 38% 31%

Khon Kaen—Electric [25] M 22.9 5.0 0.47 −0.61 781 7% 26% 38% 29%
Khon Kaen—Gasoline [25] M 22.6 4.9 0.49 −0.55 775 8% 28% 34% 30%

Shanghai—Electric [26] M 19.7 9.3 0.33 −0.32 1704 14% 14% 35% 36%
Taipei [22] M 17.5 4.6 0.49 −0.53 950 8% 21% 37% 35%

Toronto—HDT 1 M. Artl. [1] T 12.2 6.0 0.40 −0.47 1774 5% 33% 33% 28%
Toronto—HDT 1 Freeway [1] T 40.8 16.2 0.18 −0.25 1430 33% 3% 38% 26%
Toronto—LDT 2 M. Artl. [1] T 18.1 9.0 0.57 −0.57 1788 6% 33% 30% 30%
Toronto—LDT 2 Freeway [1] T 53.1 26.5 0.29 −0.44 1794 23% 3% 44% 29%
Toronto—MDT 3 M. Artl. [1] T 15.0 7.5 0.34 −0.53 1795 5% 32% 38% 25%
Toronto—MDT 3 Freeway [1] T 39.5 18.9 0.19 −0.24 1723 39% 3% 33% 25%

Average 25.5 10.6 0.38 −0.46 1478 15% 19% 36% 30%
Standard Deviation 12.4 6.7 0.13 0.13 447 12% 12% 4% 3%
Correlation Coefficient in Relation to Fuel

Economy 0.27 0.33 −0.65 0.85 0.27 0.76 −0.75 −0.19 0.15

1 Heavy Duty Trucks; 2 Light Duty Trucks; 3 Medium Duty Trucks.
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Figure 4. Fuel economy in function of: (a) average speed; (b) average acceleration; (c) cruising time.

3.4. Results for Energy

For comparison purposes, all the EPs for the LDCs (Tables 9 and 10) are calculated for the reference
car, defined in Table 3, using Equations (1)–(6). The same car is also used for the LDCs originally
developed for motorcycles and trucks (Table 10). The average energy consumption for the passenger
cars was EC = 2.1 ± 0.3 MJ/km (FE = 13.5 ± 2.3 km/L, Table 9), whereas for FTP-75 cycle, it was EC =

2.4 MJ/km (FE = 12.0 km/L), and for WLTC was EC = 2.8 MJ/km (FE = 10.5 km/L). In this paper, if not
stated otherwise, the economy is expressed in km per liter of E22.
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Table 9. EPENV of the LDCs and SDCs for passenger cars.

Local Driving Cycle Reference FE EC drag inertia rolling idling

FTP-75 cycle [48] 12.0 2.4 22% 46% 28% 5%
WLTC (class 3) [49] 10.5 2.8 38% 36% 25% 2%

Athens [20] 11.2 2.6 9% 59% 22% 11%
Bangalore [11] 11.6 2.5 17% 47% 34% 3%

Beijing [33] 13.5 2.1 15% 53% 30% 2%
Beijing [24] 13.0 2.2 9% 51% 26% 15%
Beijing [3] 11.1 2.6 22% 51% 27% 0%

Changchun [33] 12.1 2.4 25% 32% 39% 3%
Chengdu [33] 13.0 2.2 16% 53% 30% 0%

Chennai—Car Peak [12] 13.2 2.2 22% 27% 51% 0%
Chennai—Car Off-Peak [12] 16.2 1.8 10% 48% 40% 2%

Chongqing [33] 13.0 2.2 15% 50% 22% 13%
Edinburgh [38] 11.3 2.6 7% 48% 25% 19%
Fortaleza [23] 11.3 2.6 10% 51% 23% 16%

Hanoi [13] 17.0 1.7 7% 45% 37% 11%
Hong Kong [32] 11.1 2.6 4% 52% 21% 22%

Hong Kong—Urban [40] 11.9 2.4 17% 45% 30% 8%
Hong Kong—Sub Urb [40] 13.6 2.1 23% 46% 30% 0%

Hong Kong—HWY [40] 14.0 2.1 30% 32% 32% 6%
Jilin [33] 14.6 2.0 17% 47% 34% 3%

Jiutai [33] 15.4 1.9 8% 58% 33% 2%
Mashad [41] 12.1 2.4 9% 51% 26% 15%

Mianyang [33] 13.4 2.2 16% 49% 31% 4%
Nanjing [42] 16.1 1.8 25% 32% 39% 3%
Ningbo [33] 13.2 2.2 9% 53% 29% 8%

Santa Maria—12 am [21] 20.5 1.4 22% 27% 51% 0%
Shanghai [33] 12.5 2.3 18% 47% 29% 7%
Sydney [44] 10.8 2.8 15% 50% 22% 13%
Tianjin [33] 15.1 1.9 14% 45% 36% 5%
Zitong [33] 16.9 1.7 14% 44% 40% 2%

LDC Average 13.5 2.1 15% 46% 32% 7%
LDC Standard Deviation 2.3 0.3 7% 8% 8% 6%

Table 10. EPENV of the LDCs for trucks (T) and motorcycles (M).

Local Driving Cycle Reference VT FE EC drag inertia rolling idle

Khon Kaen [46] M 12.2 2.4 11% 56% 27% 6%
Khon Kaen—Electric [25] M 12.1 2.4 9% 49% 28% 14%

Khon Kaen—Gasoline [25] M 13.1 2.2 10% 51% 28% 11%
Shanghai—Electric [26] M 17.8 1.6 7% 42% 39% 10%

Taipei [22] M 13.7 2.1 4% 62% 29% 5%
Toronto—HDT 1 Arterial [1] T 11.3 2.6 31% 23% 45% 1%
Toronto—HDT 1 Freeway [1] T 16.7 1.7 31% 21% 47% 1%
Toronto—LDT 2 Arterial [1] T 11.0 2.6 30% 40% 30% 0%
Toronto—LDT 2 Freeway [1] T 12.5 2.3 3% 48% 22% 27%
Toronto—MDT 3 Arterial [1] T 11.3 2.6 4% 43% 23% 30%
Toronto—MDT 3 Freeway [1] T 17.6 1.7 8% 56% 21% 15%

Hanoi [13] M 18.1 1.6 6% 44% 44% 6%

Average 13.9 2.2 13% 44% 32% 10%
Standard Deviation 2.8 0.4 11% 12% 9% 10%

1 Heavy Duty Trucks; 2 Light Duty Trucks; 3 Medium Duty Trucks.
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In Table 9, EC is the energy consumption of the whole cycle, in MJ/km, comprising all the modes
of energy (drag, inertia, rolling, and idling). It is important to emphasize that these values are in MJ of
the fuel, and already consider the engine and transmission efficiency. The gravitational force is not
included, because we simulated the reference vehicle considering a plain road, and the wind speed was
0 km/h. Comparing the average values of the LDCs in Table 9 with those with FTP-75 cycle and WLTC,
we see that WLTC has a higher drag power (LDCs average: 0.3 MJ/km; WLTC: 1.1 MJ/km; FTP-75 cycle:
0.5 MJ/km) owing to its higher speed. In comparison, FTP-75 cycle has the higher inertial power (LDCs
average: 1.0 MJ/km; WLTC: 1.0 MJ/km; FTP-75 cycle: 1.1 MJ/km), owing to its higher acceleration.

In Table 9, on average, the highest energy spent during a driving cycle is to overcome the inertia
(46%), followed by for the rolling resistance (32%), aerodynamic drag (15%), and idling (7%). The
drag is not extremely important, owing to the low average speed. Focusing on specific driving cycles,
WLTC has a high drag energy percentage (38%), owing to its high speed, whereas Hong Kong has a
low drag (4%), owing to its low speed. Athens has a high inertial energy percentage (59%), owing to
its high acceleration allied to low speed, and Hong Kong has a high idling energy percentage (22%),
because it has a long idling time. WLTC has a high (2.8 MJ/km) overall fuel energy, owing to its high
speed, whereas Santa Maria has a low value (1.4 MJ/km), owing to its low acceleration.

From Table 9, it also possible to obtain an estimation of the CO2 emitted using stoichiometric
calculation. The energy consumption (MJ/km) can be converted to CO2 emitted when multiplying it
by a factor of 0.072 kg CO2/MJ of E22.

Table 10 summarizes the energy splitting considering the cycles developed for other vehicles
(trucks and motorcycles). We emphasize that although the cycles are developed for distinct vehicles,
for comparison, all of the energy calculations were conducted for the same reference vehicle (Table 3).
In fact, in these calculations, the differences in the masses of the motorcycles and the trucks were not
considered (our aim here was to compare cycles, not vehicles). The cycles developed for motorcycles
(simulated with the reference car) present lower energy consumption (2.1 MJ/km), owing to their lower
speed (21.3 km/h), and for trucks (also simulated with the reference car), the values are 2.3 MJ/km and
29.8 km/h. The inertial resistance percentage is higher for the cycles developed for motorcycles (50%),
because of their higher acceleration (0.44 m/s2), than that for the cycles for trucks (38%; a = 0.33 m/s2).
For comparison, by changing the characteristics of the vehicles (e.g., drag, mass, and power peak), if
we simulated FTP-75 cycle with a motorcycle, then we would obtain FE = 32.1 km/L (E22) and EC = 0.9
MJ/kg; and for a truck, FE = 3.7 km/L (diesel) and EC = 9.6 MJ/kg.

The simulations provided in Table 9 (cycles for the passenger cars) point to the gains one could
obtain with each technological improvement. The major consumption is by the inertial resistance (46%),
thus the improvement should point primarily to mass reduction. One should remember (Equation
(1)) that the mass also influences the rolling and gravitational resistances; thus, mass gains would
have a higher impact than only reducing the inertial resistance. The second major consumption is by
the rolling resistance (32%), which can be decreased with a higher tire pressure, stiffer dampers, and
lowering the mass. However, such ameliorations do not depend only on the vehicle itself, because they
depend on the quality of the roads as well. The aerodynamic drag is not extremely important (15%)
owing to the lower speeds (recalling that aerodynamic improvements in general increase the price of a
vehicles). The use of a start–stop strategy could decrease the energy consumed during idling (7%).
Our simulations did not consider the road inclination, because the cycles did not yield this variable.
However, certainly the gravitational resistance is also a major factor in energy consumption.

Indeed, the general recommendations continue to be valid, e.g., the adoption of hybrid and
electric vehicles and regenerative braking. These modifications can be considered in the reference
vehicle/engine model of this study, changing the total mass and maximal engine efficiency of the vehicle
in Table 3. Table 11 summarizes the values of the EC and FE in the case of technology improvements
or under other road conditions. For example, if the car mass was to be reduced by 50%, the energy
consumption would decrease by 17%. The use of ethanol as a fuel instead of E22 would decrease
the energy consumption in 2% (owing to its higher-octane number, compression ratio, and engine
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efficiency). The effect of the wind is small (4% for a 5 km/h wind). A slope of 2◦ would increase the
energy consumption by 72%, from 2.39 to 4.11 MJ/km. With road inclination, 43% of the energy is spent
to overcome the gravitational resistance, whereas drag, inertia, rolling, and idle contributes with 14%,
21%, 19%, and 3%, respectively.

Table 11. Energy consumption variation for simulation changes for FTP-75 cycle.

Cases EC (MJ/km) Variation of EC FE (km/L)

Standard 2.39 12.1
1
2 m 1.98 −17% 14.7

1
2 CR 2.06 −14% 14.1
1
2 kA 2.11 −12% 13.8

1
2 Pmax_eng 2.08 −13% 13.9
2 Pmax_eng 2.40 0% 12.1
Ethanol 2.35 −2% 8.6
θ = 2◦ 4.11 72% 7.05

W = 5 km/h 2.49 4% 11.7

Returning to Table 7 (the LDCs developed for cars), the last row presents the correlation between
the FE and the CPs. For cars, the highest correlation was for the cruising time (r = 0.90), followed by for
deceleration (r = 0.84) and acceleration (r = −0.81). It might seem surprising to find the cruising time as
the most important factor influencing the FE, because according to Table 9, inertia (thus acceleration) is
the most important energy fraction in the consumption. The explanation is that there is a correlation
between the cruising time and the acceleration (r = −0.71): the longer the cruising time (constant
speed), the lower the acceleration. There is also a strong correlation between the deceleration and the
acceleration (r = −0.89), because each time a car brakes, it has to subsequently accelerate, which also
explains the influence of deceleration on the FE. Unexpectedly, there is no correlation between the time
percentage a car accelerates and its energy consumption; this occurs because there is no correlation
between a and AT (r = −0.11).

No good correlation is found between the FE and the average speed of the car (r = 0.35); therefore,
it is possible to conclude that the average speed is not a good alternative to estimate fuel economy. This
conclusion is similar to that of Ho et al. [19]. Obviously, in general, the energy consumption varies with
the average speed, because the drag energy varies with V3. We did not find this correlation because
the average speed for the studied LDCs (for cars) was low, 27.1 (±7.6) km/h. This is listed in Table 9, in
which only 15% of the energy is owing to the aerodynamic drag.

Figure 4 illustrates the variation of the FE with the average speed (Figure 4a), average acceleration
(Figure 4b), and cruising time (Figure 4c), illustrating the correlation coefficients (r) discussed above.
Equation (11) provides a good estimation of the FE using only the CPs, without the necessity of
simulating the car as conducted in this study. The mean deviation of Equation (11) is ±0.7 km/L (i.e.,
6% of the average FE)

FE = 33.12 CT + 9.04, (11)

Recalling, all the calculations until now were conducted for a 1 ton car. For example, if the car
was 1.4 ton, the FE would be decreased by 2.7 km/L.

To understand the importance of acceleration (or cruising time) for the energy consumption (or
FE), we chose two cycles from Figure 4 with distinct values of the FE: Athens and Nanjing. Both were
selected because they were in the main cluster of Figure 4c and near the regression curve. From the
data for Athens (V = 20.1 km/h, a = 0.57 m/s2, FE = 11.2 km/L, EC = 2.6 MJ/km, CT = 5%, D = 6.5 km, t
= 1160 s) and Nanjing (V = 36.3 km/h, a = 0.29 m/s2, FE = 16.1 km/L, EC = 1.8 MJ/km, CT = 23%, D =

11.8 km, t = 1174 s), we again confirm that acceleration (reflected in cruising time, CT, as discussed
above) is the main parameter influencing the energy consumption.
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Figure 5a presents the speed vectors of the two cities (Athens and Nanjing), from which it is
noticeable that in Nanjing, the average speed is higher than in Athens. Figure 5b presents the evolution
of the energy consumption (accumulated energy per total cycle distance, MJ/km) for both the cycles.
Figure 5c displays the traveled distances for both the cities (it should be noted that the Athens cycle is
half the distance of Nanjing, although requiring approximately the same total time).Energies 2020, 13, x FOR PEER REVIEW 16 of 20 
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Figure 5. For Athens LDC and Nanjing LDC: (a) vehicle speed, (b) energy consumption, and (c)
distance, in function of time.

By analyzing the energy simulations for the LDCs in Table 9 (passenger car), we calculated that
75% of the energy consumption (when the car is accelerating) occurs with accelerations under 38%
of the maximal acceleration of each cycle. Approximately 1

4 of the total consumption occurs when
the acceleration is in each of the ranges of 0–11%, 12–21%, 22–38%, and 39–100% of the maximum
acceleration of the vehicle. Returning to Equation (1), we note that inertia contributes with a term
aV; therefore, higher accelerations should be expected to be more important than lower accelerations,
for the energy consumption. However, lower accelerations, regardless of their lower values, are
more frequent in the cycles (median acceleration of the cycles is 0.31 m/s2 and the mean acceleration
is 0.44 m/s2), contributing more to the energy consumption in the integral of Equation (5) than the
higher accelerations.

4. Conclusions

In this study, we organized 77 local driving cycles (LDCs, Tables 4 and 5) from 32 papers, collecting
their main kinematic parameters (e.g., average speed, acceleration, and idling percentage). It was
possible to extract (using a method validated in this paper, Table 6) 40 numerical vectors from the
speed–time profiles in the 20 papers, which were organized into two tables: 28 LDCs developed for cars
(Table 7) and 12 LDCs developed for motorcycles and trucks (Table 8). In those tables (Tables 6–8), the
kinematic parameters were re-calculated using a standardized procedure. Subsequently, we simulated
the energy consumption for each LDC, dividing the energy into inertia, drag, rolling, and idling
(Tables 9 and 10). Finally, we analyzed the influence of the kinematic parameters on the fuel economy
(correlations shown in the bottom of Tables 7 and 8) and the effect of the parameters of the vehicle
(Table 11) on the energy consumption and fuel economy.

We can now proceed with the conclusion, emphasizing that the main objective of this study is
to numerically compare LDCs among themselves and against SDCs. Based on our results, we can
numerically affirm that there are significant differences between LDCs and SDCs as the following
results demonstrate: LDCs have lower average speed and acceleration (V = 27.1 km/h, a = 0.43 m/s2)
when compared to one of the most prominent SDCs worldwide, FTP-75 cycle (V = 34.1 km/h, a = 0.51
m/s2). In this study, we found (as partially expected) acceleration as the most important factor for
energy consumption. The studied LDCs have relatively low average speed (14.7 to 44.7 km/h, Table 7);
therefore, we could not obtain a correlation between the average speed and the energy consumption.
However, this does not suggest that there is no such correlation in general.
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For the cycles investigated in this study, the average use of energy was 46% for inertia, 32% for
rolling, 15% for drag, and 7% for idling. Therefore, the most important technological improvement of
the vehicles should be mass reduction (besides the improvement of engine technologies, e.g., the use of
hybrids or electrical propulsion). In addition to inertia, decreasing the mass also presented an impact
on the rolling and gravitational resistances (Equation (1)). We highlight that the qualitative results can
be used for a general comparison of the cycles, but the numeric results apply only for the reference car
informed in Table 3.

We found a strong correlation existed between the average acceleration, cruising time, and
average deceleration and between these parameters and the fuel economy. We developed a numerical
correlation between the FE (fuel economy) and CT (cruising time), which permits the estimation of the
fuel economy of a cycle without the energy simulations discussed in this paper. The fuel economy was
observed to be strongly influenced by the acceleration (correlation r = −0.81). For example, in the limit
cases in Tables 7 and 9, Santa Maria (a = 0.20 m/s2; FE = 20.5 km/L) presented a higher fuel economy
than Sydney (a = 0.73 m/s2; FE = 10.8 km/L).

Table 9 demonstrates that there are significant differences in the LDCs in relation to the energy
use. For example, the use of the fuel energy to overcome inertia varies in the range of 0.4–1.5 MJ/km,
rolling 0.5–1.1 MJ/km, aerodynamic drag 0.1–0.6 MJ/km, and idling 0.0–0.6 MJ/km (these results could
be obtained by multiplying the percentages by EC in Table 9).

SDCs are important to compare the impacts of different technologies on the energy consumption
and emissions in different countries, whereas local driving cycles assess these parameters for a specific
region. We calculated that the LDCs evaluated in this study significantly differ among themselves.
For cars, the standard deviation of the acceleration in the LDCs is 0.11 m/s2 and in speed is 7.6 km/h,
resulting in a standard deviation in fuel economy of 2.3 km/L. For other vehicles, the standard deviation
in fuel economy is 2.8 km/L. When the average results of the LDCs for passenger cars are compared to
the SDCs, they present a difference in the fuel economy of 12.5% (1.5 km/L) and of 28.6% (3.0 km/L)
when compared to FTP-75 cycle and WLTC-3, respectively. Therefore, this paper confirms the reasoning
of the worldwide praxis of developing local driving cycles. The numerical results we obtained show
that the SDCs might not be representative of specific regions, so they should not be used as the solely
legal testing procedure. We suggest that countries and major cities consider developing their own
LDCs, in addition to SDCs, to better evaluate their reality.
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